skip to main content


Search for: All records

Creators/Authors contains: "Cheng, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Abstract In additive manufacturing of metal parts, the ability to accurately predict the extremely variable temperature field in detail, and relate it quantitatively to structure and properties, is a key step in predicting part performance and optimizing process design. In this work, a finite element simulation of the directed energy deposition (DED) process is used to predict the space- and time-dependent temperature field during the multi-layer build process for Inconel 718 walls. The thermal model results show good agreement with dynamic infrared images captured in situ during the DED builds. The relationship between predicted cooling rate, microstructural features, and mechanical properties is examined, and cooling rate alone is found to be insufficient in giving quantitative property predictions. Because machine learning offers an efficient way to identify important features from series data, we apply a 1D convolutional neural network data-driven framework to automatically extract the dominant predictive features from simulated temperature history. Very good predictions of material properties, especially ultimate tensile strength, are obtained using simulated thermal history data. To further interpret the convolutional neural network predictions, we visualize the extracted features produced on each convolutional layer and compare the convolutional neural network detected features of thermal histories for high and low ultimate tensile strength cases. A key result is the determination that thermal histories in both high and moderate temperature regimes affect material properties. 
    more » « less
  3. Barbash, Daniel A (Ed.)
    Advances in genomic technology led to a more focused pattern for the distribution of chromosomal proteins and a better understanding of their functions. The recent development of the CUT&RUN technique marks one of the important such advances. Here we develop a modified CUT&RUN technique that we termed nanoCUT&RUN, in which a high affinity nanobody to GFP is used to bring micrococcal nuclease to the binding sites of GFP-tagged chromatin proteins. Subsequent activation of the nuclease cleaves the chromatin, and sequencing of released DNA identifies binding sites. We show that nanoCUT&RUN efficiently produces high quality data for the TRL transcription factor in Drosophila embryos, and distinguishes binding sites specific between two TRL isoforms. We further show that nanoCUT&RUN dissects the distributions of the HipHop and HOAP telomere capping proteins, and uncovers unexpected binding of telomeric proteins at centromeres. nanoCUT&RUN can be readily applied to any system in which a chromatin protein of interest, or its isoforms, carries the GFP tag. 
    more » « less
  4. Abstract Potato ( Solanum tuberosum L.) is the world’s most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production 1–4 . So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota , the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum . Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop. 
    more » « less
  5. Abstract Missing heritability in genome-wide association studies defines a major problem in genetic analyses of complex biological traits 1,2 . The solution to this problem is to identify all causal genetic variants and to measure their individual contributions 3,4 . Here we report a graph pangenome of tomato constructed by precisely cataloguing more than 19 million variants from 838 genomes, including 32 new reference-level genome assemblies. This graph pangenome was used for genome-wide association study analyses and heritability estimation of 20,323 gene-expression and metabolite traits. The average estimated trait heritability is 0.41 compared with 0.33 when using the single linear reference genome. This 24% increase in estimated heritability is largely due to resolving incomplete linkage disequilibrium through the inclusion of additional causal structural variants identified using the graph pangenome. Moreover, by resolving allelic and locus heterogeneity, structural variants improve the power to identify genetic factors underlying agronomically important traits leading to, for example, the identification of two new genes potentially contributing to soluble solid content. The newly identified structural variants will facilitate genetic improvement of tomato through both marker-assisted selection and genomic selection. Our study advances the understanding of the heritability of complex traits and demonstrates the power of the graph pangenome in crop breeding. 
    more » « less
  6. null (Ed.)